############################################################### ############################################################### ############################################################### ### CCP4 7.0.077: AIMLESS version 0.7.4 : 13/12/18## ############################################################### User: unknown Run date: 17/ 3/2020 Run time: 18:23:35 Please reference: Collaborative Computational Project, Number 4. 2011. "Overview of the CCP4 suite and current developments". Acta Cryst. D67, 235-242. as well as any specific reference in the program write-up. ==== Command line arguments ==== HKLIN _HV7xxRWt9PT3HDO-SWS-masked-aniso-mrf.mtz HKLOUT _HV7xxRWt9PT3HDO-SWS-masked-scaled.mtz SCALES _HV7xxRWt9PT3HDO-SWS-masked-scaled.scales ==== Input command lines ==== INIT UNIT BINS 10 INTE 10 SCAL ABSO 6 ANOM ==== End of input ==== OS type: linux Release Date: 13th December 2018 ****************************************************** * * * AIMLESS * * 0.7.4 * * * * Scaling & analysis of unmerged intensities * * Phil Evans MRC LMB, Cambridge * * * ****************************************************** --------------------------------------------------------------- Reading data from HKLIN filename: _HV7xxRWt9PT3HDO-SWS-masked-aniso-mrf.mtz Reflection list generated from file: _HV7xxRWt9PT3HDO-SWS-masked-aniso-mrf.mtz Title: Run of STARANISO on: _HV7xxRWt9PT3HDO-SWS-xdsmtz-mrf.mtz Space group from HKLIN file : P 2 2 2 Cell: 116.65 121.28 129.50 90.00 90.00 90.00 Resolution range in file: 57.12 3.88 Time for reading HKLIN: cpu time: 0.12 secs, elapsed time: 0.0 secs Resolution range accepted: 57.12 3.88 Number of reflections = 14975 Number of observations = 73485 Number of parts = 73485 Number of batches = 992 Number of datasets = 1 * Dataset information * Project: XDSproject Crystal: XDScrystal Dataset: XDSdataset Unit cell: 116.65 121.28 129.50 90.00 90.00 90.00 Wavelength: 0.96600 Runs: 1 Run number: 1 consists of batches 2 - 993 Resolution range for run: 57.12 3.88 Phi range: 105.15 to 253.95 Time range: 105.15 to 253.95 Closest reciprocal axis to spindle: a* (angle 20.8 degrees) Average unit cell: 116.65 121.28 129.50 90.00 90.00 90.00 Summation-integration (or sole) intensities will be used Outlier rejection parameters: In scaling: Reflections measured 3 or more times: 6 maximum deviation from weighted mean of all other observations Reflections measured twice: 6 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP Reflections judged implausibly large will be rejected Maximum and minimum normalised F (ie E) for acentric reflection 10.00, -5.00 Maximum and minimum normalised F (ie E) for centric reflection 13.94, -6.97 In merging: Reflections measured 3 or more times: 6 maximum deviation from weighted mean of all other observations Reflections measured twice: 6 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP Reflections judged implausibly large will be rejected Maximum and minimum normalised F (ie E) for acentric reflection 10.00, -5.00 Maximum and minimum normalised F (ie E) for centric reflection 13.94, -6.97 Parallisation of refinement: Refinement stages will use a single processor >>>> Layout of scale factors: <<<< Run 1 Smooth scaling: 32 scales at intervals of 4.96 over range 105.15 to 253.95 in 30 parts Smooth B-factors: 9 scales at intervals of 21.26 over range 105.15 to 253.95 in 7 parts Secondary beam correction in crystal frame, lmax = 6, 5, pole = automatic Secondary beam parameters will be TIED to zero, ie restrained to a sphere, with a standard deviation of 0.005, number of ties 48 Parameter variances (DIAGONAL) will be used for sigma(I) estimates ========= Checking for scaling overlaps ========= The average fractional overlap = Noverlapped/Ntotal, where Noverlapped is the number of observations with equivalent observations in a different rotation range, and Ntotal is the total number of observations Average fractional overlap between rotation ranges for run 1 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.94 0.98 0.97 Overall fractional overlap between rotation ranges 0.99, minimum 0.94 Time for initial scaling: cpu time: 0.03 secs, elapsed time: 0.0 secs ========= Initial scales all set to 1.0 ========= Sufficient rotation ranges are above the minimum threshold for fractional overlap between rotation ranges = 0.05 ========= First round scaling ========= First scaling: 2406 reflections selected from 14975 with I/sd > 6.00, using every 3'th reflection above that limit Optimization statistics macrocycle #1 Cycle end-this-cycle change-from-start change-from-last start -5223.450 #1 -5177.166 46.285 46.285 #2 -5175.407 48.044 1.759 ---ITERATION LIMIT OF MACROCYCLE--- Number of outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 Time for 1st scaling: cpu time: 0.58 secs, elapsed time: 1.0 secs First rough optimisation and analysis of standard deviations ============================================================ Weighting scheme for averages: variance weights Run 1 has only fulls For run 1, slope of central part of normal probability plot = 1.22 Correction applied to parameters for fulls SD correction parameters after normal probability correction Fulls Run SdFac SdB SdAdd ISa 1 OnlyFulls 1.22 0.00 0.0200 41.1 I+ and I- will be kept separate in SD optimisation For SD optimisation, number of outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 10459 reflections selected for SD optimisation out of 14975 in file Damping factor: 0.050 No restraints on SD correction parameters Cycle 1 residual 0.01749 Cycle 2 residual 0.00520 Cycle 3 residual 0.00136 Cycle 4 residual 0.00125 Cycle 5 residual 0.00125 Cycle 6 residual 0.00125 SD correction parameters after optimisation Fulls Run SdFac SdB SdAdd ISa AllRuns OnlyFulls 1.02 0.00 0.0128 76.1 Time for SD optimisation = cpu time: 1.04 secs, elapsed time: 1.0 secs Number of outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 ========= Main scaling ========= Main scaling: 5450 reflections selected from 14975 with |E^2| > 0.80 and |E^2| < 5.00 Optimization statistics macrocycle #1 Cycle end-this-cycle change-from-start change-from-last start -10691.968 #1 -10561.910 130.058 130.058 #2 -10548.343 143.624 13.567 #3 -10548.223 143.745 0.120 #4 -10548.222 143.746 0.002 Scale parameters: Run 1 Primary scales and number of observations Scales: 0.900 1.000 0.971 0.971 0.969 0.978 0.980 0.973 0.992 0.980 Sd: 0.014 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 Nobs: 763 1683 2579 2766 2850 3028 3167 3215 3245 3282 Scales: 0.990 0.983 0.997 0.970 1.000 0.958 0.964 0.958 0.959 0.956 Sd: 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.004 0.004 Nobs: 3329 3312 3303 3235 3103 2918 2781 2656 2516 2383 Scales: 0.952 0.955 0.945 0.960 0.936 0.950 0.943 0.946 0.942 0.943 Sd: 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.006 0.006 0.006 Nobs: 2318 2285 2252 2247 2183 2129 2089 2031 2060 2012 Scales: 0.949 0.930 Sd: 0.007 0.016 Nobs: 1375 672 Relative B-factors and number of observations B-factors: 1.401 -1.401 -1.277 -0.214 -3.324 -1.361 -1.676 -0.584 -2.413 Sd: 1.003 0.285 0.217 0.229 0.229 0.261 0.299 0.447 1.136 Nobs: 3810 8382 13126 13415 12186 10567 9364 6021 2896 Secondary scales Scale set 1 Coefficient(Sd): -0.0035(21) -0.0003(22) 0.0018(21) -0.0020(22) -0.0024(21) -0.0025(20) Coefficient(Sd): -0.0015(22) 0.0040(20) -0.0005(21) 0.0006(21) 0.0004(20) -0.0052(21) Coefficient(Sd): -0.0003(20) -0.0014(21) 0.0031(19) -0.0043(21) -0.0010(20) 0.0042(20) Coefficient(Sd): -0.0022(21) 0.0022(20) -0.0016(20) 0.0001(19) -0.0008(21) 0.0016(18) Coefficient(Sd): -0.0016(20) -0.0007(20) -0.0013(19) -0.0044(19) 0.0055(19) -0.0004(20) Coefficient(Sd): 0.0010(18) 0.0047(19) 0.0005(17) -0.0019(21) 0.0020(17) -0.0061(19) Coefficient(Sd): -0.0025(19) 0.0045(18) -0.0044(18) 0.0004(17) 0.0034(17) 0.0015(16) Coefficient(Sd): -0.0025(18) -0.0003(16) 0.0069(17) 0.0016(12) -0.0018(20) 0.0021(13) Time for main scaling: cpu time: 2.83 secs, elapsed time: 3.0 secs Secondary scale corrections, in crystal frame (ABSORPTION), pole automatic Calculated for polar angles of theta (colatitude from 0 at N pole, 180 at S pole) and phi (longitude) Printed only for angular ranges containing data Range of secondary corrections: 0.957 - 1.044 Secondary scale number 1 Theta 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 Phi 0 - - - - 0.99 1.00 - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - 20 - - - - - - - - - - - - - - - - - - 30 - - - - - - - - - - - - - - - - - - 40 - - - - - - - - - - - - - - - - - - 50 - - - - - - - - - - - - - - - - - - 60 - - - - - - - - - - - - - - - - - - 70 - - - - - - - - - - - - - - - - - - 80 - - - - - - - - - - - - - - - - - - 90 - - - - - - - - - - - - - - - - - - 100 - - - - - - - - - - - - - - - - - - 110 - - - - - - - - - - - - - - - - - - 120 - - - - - - - - - - - - - - - - - - 130 - - - - - - - - - - - - - - - - - - 140 - - - - - - - - - - - - - - - - - - 150 - - - - - - - - - - - - - - - - - - 160 - - - - - - - - - - 1.00 - - - - - - - 170 - - - - - - - 1.01 1.01 1.01 1.00 0.99 - - - - - - 180 - - - - 1.01 1.01 1.02 1.02 1.02 1.02 1.01 1.00 - - - - - - 190 - - - 0.99 1.00 1.01 1.02 1.02 1.02 1.01 1.01 1.00 - - - - - - 200 - - 0.97 0.98 0.99 1.00 1.01 1.01 1.01 - - - - - - - - - 210 - 0.96 0.96 0.97 0.98 0.99 1.00 - - - - - - - - - - - 220 - 0.96 0.96 0.96 0.97 0.99 - - - - - - - - - - - - 230 - 0.96 0.96 0.96 0.98 - - - - - - - - - - - - - 240 - 0.96 0.96 0.97 - - - - - - - - - - - - - - 250 0.96 0.96 0.96 0.97 - - - - - - - - - - - - - - 260 0.96 0.96 0.97 0.98 - - - - - - - - - - - - - - 270 0.96 0.96 0.97 0.99 - - - - - - - - - - - - - - 280 0.96 0.96 0.98 1.00 - - - - - - - - - - - - - - 290 0.96 0.96 0.98 1.01 - - - - - - - - - - - - - - 300 - 0.96 0.98 1.01 - - - - - - - - - - - - - - 310 - 0.96 0.98 1.01 1.02 - - - - - - - - - - - - - 320 - 0.96 0.98 1.00 1.01 - - - - - - - - - - - - - 330 - 0.97 0.98 1.00 1.00 0.99 - - - - - - - - - - - - 340 - 0.97 0.98 0.99 0.99 0.98 0.98 - - - - - - - - - - - 350 - - 0.98 0.99 0.99 0.99 0.99 - - - - - - - - - - - $TABLE: Histogram of secondary corrections: $GRAPHS:Histogram of secondary corrections:N:2,3: $$ N SecScale Number $$ $$ 11 0.96 17762 12 0.98 17844 13 1.00 30502 14 1.02 7377 $$ Optimisation and analysis of standard deviations ================================================ Weighting scheme for averages: variance weights Run 1 has only fulls For run 1, slope of central part of normal probability plot = 1.19 Correction applied to parameters for fulls SD correction parameters after normal probability correction Fulls Run SdFac SdB SdAdd ISa 1 OnlyFulls 1.22 0.00 0.0128 63.9 I+ and I- will be kept separate in SD optimisation For SD optimisation, number of outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 11008 reflections selected for SD optimisation out of 14975 in file Damping factor: 0.050 Restraints on SD correction parameters (target (+-SD)): SdB 0.0 (+-10.0) Cycle 1 residual 0.01504 (main residual 0.01504 restraint residual 0.00000) Cycle 2 residual 0.00153 (main residual 0.00153 restraint residual 0.00000) Cycle 3 residual 0.00006 (main residual 0.00006 restraint residual 0.00000) Cycle 4 residual 0.00004 (main residual 0.00004 restraint residual 0.00000) Cycle 5 residual 0.00004 (main residual 0.00004 restraint residual 0.00000) Cycle 6 residual 0.00004 (main residual 0.00004 restraint residual 0.00000) SD correction parameters after optimisation Fulls Run SdFac SdB SdAdd ISa 1 OnlyFulls 0.93 0.24 -0.0157 0.0 Time for SD optimisation = cpu time: 1.11 secs, elapsed time: 1.0 secs Normal probability analysis of anomalous differences ==================================================== All data Data within expected delta 0.90 Slope Intercept Number Slope Intercept Number 0.98 0.06 12449 0.99 0.06 7867 Outlier rejection limits for I+ v I- have been adjusted by a factor 3.70 * 0.99 Reflections measured 3 or more times: 32.8 maximum deviation from weighted mean of all other observations Reflections measured twice: 32.8 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP The anomalous signal appears to be weak so anomalous flag was left OFF Outlier analysis ================ Test for Emax Number of rejected outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 ******************** * Final statistics * ******************** ******************************************************************* * Merging statistics for dataset XDSproject/XDScrystal/XDSdataset * ******************************************************************* Analysis by Batch is in groups of batches, group width 1.00 degrees, 7 batches/group Time for determination of anisotropic axes: cpu time: 0.29 secs, elapsed time: 0.0 secs Multiplicity 4.9 is above threshold 1.5 so deviant reflections measured twice are REJECTED in SD and Chi^2 analysis Accepted data: Number of unique reflections 14975 Number of observations 73485 Number of rejected outliers 0 Number of observations rejected on Emax limit 0 Scale factors analysed by Batch for each dataset ================================================ Note that 0k below is calculated for the centre of each rotation range, at theta = 0 (for the B-factor) Mn(k) is average applied scale, including any input scale 0k is the scale calculated excluding any input scale Analysis by Batch is in groups of batches, group width 1.00 degrees, 7 batches/group Bdecay comes from a straight line fit to the B-factors within each run For run number 1, slope of B (A^2/degree) -0.000 $TABLE: === Scales v rotation range, XDSdataset: $GRAPHS:Mn(k) & 0k (theta=0) v. batch:N:1,5,6: :Relative Bfactor & Decay v. batch:A:1,8,9: $$ N Run Phi Batch Mn(k) 0k Number Bfactor Bdecay $$ $$ 4 1 105.68 5 0.9691 0.9581 394 -0.0823 -1.1531 11 1 106.73 12 0.9864 0.9763 523 -0.2240 -1.1563 18 1 107.77 19 0.9997 0.9865 512 -0.3616 -1.1596 25 1 108.82 26 1.0037 0.9888 497 -0.4926 -1.1629 32 1 109.88 33 1.0025 0.9855 495 -0.6148 -1.1662 39 1 110.93 40 0.9994 0.9803 529 -0.7269 -1.1694 46 1 111.98 47 0.9952 0.9756 497 -0.8278 -1.1727 53 1 113.02 54 0.9955 0.9729 550 -0.9172 -1.1760 60 1 114.07 61 0.9943 0.9717 520 -0.9953 -1.1792 67 1 115.12 68 0.9945 0.9711 520 -1.0624 -1.1825 74 1 116.18 75 0.9960 0.9712 534 -1.1194 -1.1858 81 1 117.23 82 0.9963 0.9712 527 -1.1669 -1.1891 88 1 118.27 89 0.9966 0.9710 513 -1.2059 -1.1923 95 1 119.32 96 0.9971 0.9706 517 -1.2374 -1.1956 102 1 120.38 103 0.9966 0.9702 542 -1.2622 -1.1989 109 1 121.43 110 0.9966 0.9700 551 -1.2812 -1.2022 116 1 122.48 117 0.9968 0.9702 513 -1.2953 -1.2054 123 1 123.52 124 0.9978 0.9711 560 -1.3051 -1.2087 130 1 124.57 131 0.9998 0.9727 506 -1.3114 -1.2120 137 1 125.62 138 1.0010 0.9747 552 -1.3149 -1.2152 144 1 126.68 145 1.0027 0.9763 549 -1.3272 -1.2185 151 1 127.73 152 1.0038 0.9774 534 -1.3176 -1.2218 158 1 128.77 159 1.0037 0.9782 560 -1.3073 -1.2251 165 1 129.82 166 1.0039 0.9787 527 -1.2962 -1.2283 172 1 130.88 173 1.0039 0.9791 520 -1.2840 -1.2316 179 1 131.93 180 1.0033 0.9791 562 -1.2707 -1.2349 186 1 132.97 187 1.0022 0.9787 566 -1.2561 -1.2382 193 1 134.02 194 1.0010 0.9777 537 -1.2397 -1.2414 200 1 135.07 201 0.9986 0.9765 542 -1.2213 -1.2447 207 1 136.12 208 0.9970 0.9756 545 -1.2006 -1.2480 214 1 137.18 215 0.9959 0.9757 579 -1.1770 -1.2512 221 1 138.22 222 0.9970 0.9773 560 -1.1503 -1.2545 228 1 139.27 229 0.9990 0.9805 553 -1.1200 -1.2578 235 1 140.32 236 1.0019 0.9845 546 -1.0860 -1.2611 242 1 141.38 243 1.0040 0.9877 553 -1.0479 -1.2643 249 1 142.43 250 1.0040 0.9892 524 -1.0059 -1.2676 256 1 143.47 257 1.0026 0.9887 558 -0.9602 -1.2709 263 1 144.52 264 0.9993 0.9868 544 -0.9110 -1.2741 270 1 145.57 271 0.9953 0.9844 559 -0.8591 -1.2774 277 1 146.62 278 0.9924 0.9826 553 -0.8054 -1.2807 284 1 147.68 285 0.9905 0.9822 538 -0.7669 -1.2840 291 1 148.72 292 0.9904 0.9831 539 -0.7215 -1.2872 298 1 149.77 299 0.9911 0.9849 547 -0.6797 -1.2905 305 1 150.82 306 0.9917 0.9867 547 -0.6431 -1.2938 312 1 151.88 313 0.9924 0.9879 562 -0.6130 -1.2971 319 1 152.93 320 0.9915 0.9880 541 -0.5910 -1.3003 326 1 153.97 327 0.9906 0.9871 529 -0.5782 -1.3036 333 1 155.02 334 0.9888 0.9859 561 -0.5757 -1.3069 340 1 156.07 341 0.9882 0.9848 585 -0.5846 -1.3101 347 1 157.12 348 0.9881 0.9847 553 -0.6058 -1.3134 354 1 158.18 355 0.9899 0.9859 525 -0.6400 -1.3167 361 1 159.22 362 0.9931 0.9884 542 -0.6880 -1.3200 368 1 160.27 369 0.9972 0.9912 591 -0.7504 -1.3232 375 1 161.32 376 1.0009 0.9930 533 -0.8275 -1.3265 382 1 162.38 383 1.0017 0.9926 551 -0.9196 -1.3298 389 1 163.43 390 1.0011 0.9897 561 -1.0262 -1.3331 396 1 164.47 397 0.9988 0.9846 532 -1.1466 -1.3363 403 1 165.52 404 0.9969 0.9794 564 -1.2793 -1.3396 410 1 166.57 411 0.9961 0.9762 556 -1.4223 -1.3429 417 1 167.62 418 0.9999 0.9763 557 -1.5729 -1.3461 424 1 168.68 425 1.0072 0.9797 571 -1.7282 -1.3494 431 1 169.72 432 1.0147 0.9851 546 -1.8832 -1.3527 438 1 170.77 439 1.0245 0.9903 526 -2.0333 -1.3560 445 1 171.82 446 1.0301 0.9925 553 -2.1762 -1.3592 452 1 172.88 453 1.0301 0.9904 543 -2.3090 -1.3625 459 1 173.93 460 1.0278 0.9840 558 -2.4291 -1.3658 466 1 174.97 467 1.0211 0.9753 581 -2.5346 -1.3691 473 1 176.02 474 1.0169 0.9677 557 -2.6242 -1.3723 480 1 177.07 481 1.0141 0.9630 553 -2.6969 -1.3756 487 1 178.12 488 1.0136 0.9612 534 -2.7525 -1.3789 494 1 179.18 495 1.0145 0.9611 540 -2.7910 -1.3821 501 1 180.22 502 1.0164 0.9617 526 -2.8124 -1.3854 508 1 181.27 509 1.0174 0.9625 558 -2.8173 -1.3887 515 1 182.32 516 1.0202 0.9626 545 -2.8061 -1.3920 522 1 183.38 523 1.0182 0.9621 535 -2.7795 -1.3952 529 1 184.43 530 1.0198 0.9612 525 -2.7386 -1.3985 536 1 185.47 537 1.0178 0.9601 536 -2.6843 -1.4018 543 1 186.52 544 1.0179 0.9592 550 -2.6183 -1.4050 550 1 187.57 551 1.0159 0.9588 513 -2.5422 -1.4083 557 1 188.62 558 1.0140 0.9586 568 -2.4582 -1.4116 564 1 189.68 565 1.0146 0.9585 547 -2.3686 -1.4149 571 1 190.72 572 1.0127 0.9585 521 -2.2848 -1.4181 578 1 191.77 579 1.0130 0.9583 493 -2.1862 -1.4214 585 1 192.82 586 1.0102 0.9581 516 -2.0908 -1.4247 592 1 193.88 593 1.0103 0.9576 519 -2.0004 -1.4280 599 1 194.93 600 1.0090 0.9570 525 -1.9164 -1.4312 606 1 195.97 607 1.0070 0.9565 511 -1.8399 -1.4345 613 1 197.02 614 1.0066 0.9559 559 -1.7716 -1.4378 620 1 198.07 621 1.0052 0.9553 510 -1.7119 -1.4410 627 1 199.12 628 1.0040 0.9545 506 -1.6607 -1.4443 634 1 200.18 635 1.0033 0.9537 519 -1.6177 -1.4476 641 1 201.22 642 1.0033 0.9532 517 -1.5827 -1.4509 648 1 202.27 649 1.0022 0.9531 498 -1.5550 -1.4541 655 1 203.32 656 1.0032 0.9533 514 -1.5341 -1.4574 662 1 204.38 663 1.0040 0.9538 461 -1.5194 -1.4607 669 1 205.43 670 1.0049 0.9542 533 -1.5102 -1.4640 676 1 206.47 677 1.0046 0.9541 490 -1.5060 -1.4672 683 1 207.52 684 1.0044 0.9533 485 -1.5061 -1.4705 690 1 208.57 691 1.0030 0.9518 503 -1.5099 -1.4738 697 1 209.62 698 1.0021 0.9498 501 -1.5167 -1.4770 704 1 210.68 705 1.0004 0.9483 491 -1.5259 -1.4803 711 1 211.72 712 1.0005 0.9480 527 -1.5144 -1.4836 718 1 212.77 719 1.0022 0.9491 477 -1.5271 -1.4869 725 1 213.82 726 1.0052 0.9516 471 -1.5385 -1.4901 732 1 214.88 733 1.0096 0.9544 478 -1.5480 -1.4934 739 1 215.93 740 1.0111 0.9563 500 -1.5553 -1.4967 746 1 216.97 747 1.0118 0.9561 500 -1.5598 -1.5000 753 1 218.02 754 1.0087 0.9535 490 -1.5613 -1.5032 760 1 219.07 761 1.0053 0.9489 452 -1.5592 -1.5065 767 1 220.12 768 0.9992 0.9441 480 -1.5532 -1.5098 774 1 221.18 775 0.9965 0.9408 496 -1.5431 -1.5130 781 1 222.22 782 0.9955 0.9399 485 -1.5286 -1.5163 788 1 223.27 789 0.9968 0.9409 489 -1.5093 -1.5196 795 1 224.32 796 0.9990 0.9432 469 -1.4851 -1.5229 802 1 225.38 803 1.0012 0.9458 482 -1.4559 -1.5261 809 1 226.43 810 1.0026 0.9473 486 -1.4215 -1.5294 816 1 227.47 817 1.0026 0.9476 471 -1.3822 -1.5327 823 1 228.52 824 1.0021 0.9469 500 -1.3383 -1.5359 830 1 229.57 831 1.0002 0.9458 505 -1.2904 -1.5392 837 1 230.62 838 0.9985 0.9447 450 -1.2391 -1.5425 844 1 231.68 845 0.9968 0.9441 457 -1.1854 -1.5458 851 1 232.72 852 0.9978 0.9441 507 -1.1394 -1.5490 858 1 233.77 859 0.9948 0.9446 419 -1.0889 -1.5523 865 1 234.82 866 0.9982 0.9451 580 -1.0409 -1.5556 872 1 235.88 873 0.9952 0.9455 410 -0.9969 -1.5589 879 1 236.93 880 0.9962 0.9455 471 -0.9581 -1.5621 886 1 237.97 887 0.9951 0.9450 506 -0.9256 -1.5654 893 1 239.02 894 0.9941 0.9442 533 -0.9003 -1.5687 900 1 240.07 901 0.9926 0.9433 482 -0.8830 -1.5719 907 1 241.12 908 0.9923 0.9427 456 -0.8742 -1.5752 914 1 242.18 915 0.9915 0.9424 472 -0.8744 -1.5785 921 1 243.22 922 0.9920 0.9423 449 -0.8840 -1.5818 928 1 244.27 929 0.9919 0.9425 486 -0.9033 -1.5850 935 1 245.32 936 0.9926 0.9427 488 -0.9325 -1.5883 942 1 246.38 943 0.9931 0.9432 481 -0.9716 -1.5916 949 1 247.43 950 0.9950 0.9439 481 -1.0206 -1.5949 956 1 248.47 957 0.9965 0.9451 494 -1.0791 -1.5981 963 1 249.52 964 0.9977 0.9462 433 -1.1464 -1.6014 970 1 250.57 971 0.9996 0.9468 471 -1.2217 -1.6047 977 1 251.62 978 1.0003 0.9462 531 -1.3036 -1.6079 984 1 252.68 985 0.9977 0.9440 463 -1.3905 -1.6112 989 1 253.43 990 0.9959 0.9416 233 -1.4545 -1.6136 $$ N Run Phi Batch Mn(k) 0k Number Bfactor Bdecay Agreement between batches ========================= Rmerge in this table is the difference from Mn(Imean), but in later tables Rmerge is the difference from Mn(I+),Mn(I-) Mean Chi^2 values are calculated for all data, and also excluding observations with large deviations >5sd, including for reflections measured only twice (Chi^2c) SmRmerge and SmMaxRes in table are smoothed over 5 batch groups $TABLE: Analysis against all Batches for all runs, XDSdataset: $GRAPHS:Rmerge v Batch for all runs:N:1,15,6: :Filtered Mean(Chi^2)(<5sd) v Batch:N:1,14: :Mean(Chi^2), Mean(Chi^2)(<5sd) v Batch:N:1,13,14: :Cumulative %completeness & Anom%cmpl v Batch:N:1,10,9: :Maximum resolution limit, I/sigma > 1.0:A:1,16,11: :Imean & RMS Scatter:N:1,3,4: :Imean/RMS scatter:N:1,5: :Number of rejects:N:1,8: :Cumulative multiplicity:N:1,12: $$ N Batch Mn(I) RMSdev I/rms Rmerge Number Nrej Cm%poss AnoCmp MaxRes CMlplc Chi^2 Chi^2c SmRmerge SmMaxRes $$ $$ 4 5 108.6 30.5 3.56 0.081 764 0 2.3 0.0 3.88 0.02 1.20 1.20 0.081 3.88 11 12 88.4 9.2 9.63 0.072 1026 0 5.3 0.1 3.88 0.05 0.99 0.99 0.081 3.88 18 19 84.2 11.4 7.38 0.087 1004 0 8.0 0.2 3.88 0.08 1.11 1.11 0.081 3.88 25 26 76.7 12.0 6.40 0.083 975 0 10.7 0.4 3.88 0.11 1.03 1.03 0.077 3.88 32 33 83.9 9.6 8.71 0.083 973 0 13.2 0.6 3.88 0.14 1.09 1.09 0.078 3.88 39 40 94.6 9.2 10.24 0.066 1042 0 15.8 0.9 3.88 0.18 0.92 0.92 0.076 3.88 46 47 104.3 22.6 4.61 0.074 977 0 18.0 1.4 3.88 0.20 1.04 1.04 0.076 3.88 53 54 81.7 8.7 9.34 0.076 1075 0 20.4 1.9 3.88 0.24 0.90 0.90 0.073 3.88 60 61 78.5 9.9 7.89 0.084 1018 0 22.5 2.5 3.88 0.27 1.03 1.03 0.076 3.88 67 68 106.6 16.2 6.59 0.066 1025 0 24.5 3.2 3.99 0.30 0.99 0.99 0.080 3.88 74 75 80.0 9.4 8.49 0.081 1052 0 26.4 4.0 3.88 0.33 1.07 1.07 0.079 3.88 81 82 73.8 12.2 6.04 0.099 1032 0 28.1 4.9 3.88 0.36 1.12 1.12 0.077 3.88 88 89 89.7 9.3 9.62 0.072 1011 0 29.8 5.7 3.88 0.39 0.93 0.93 0.080 3.88 95 96 90.2 9.3 9.67 0.074 1008 0 31.4 6.7 3.98 0.42 1.02 1.02 0.080 3.88 102 103 88.9 10.5 8.45 0.079 1064 0 32.8 7.8 3.88 0.45 1.11 1.11 0.077 3.88 109 110 91.4 13.2 6.94 0.080 1088 0 34.3 8.9 3.88 0.49 1.17 1.17 0.079 3.88 116 117 81.0 9.7 8.38 0.079 1009 0 35.6 10.0 3.88 0.52 1.04 1.04 0.079 3.88 123 124 84.0 10.0 8.37 0.083 1098 0 36.9 11.3 3.88 0.55 0.99 0.99 0.078 3.88 130 131 98.6 10.1 9.77 0.073 992 0 38.0 12.5 3.88 0.58 1.07 1.07 0.073 3.88 137 138 86.9 9.6 9.02 0.078 1082 0 39.3 13.8 3.88 0.61 1.00 1.00 0.074 3.88 144 145 127.0 13.3 9.55 0.058 1076 0 40.5 15.0 3.88 0.65 0.96 0.96 0.071 3.88 151 152 72.6 9.1 8.02 0.086 1048 0 41.5 16.2 3.88 0.68 0.95 0.95 0.073 3.88 158 159 94.9 14.4 6.58 0.069 1108 0 42.6 17.5 3.88 0.71 0.98 0.98 0.072 3.88 165 166 83.8 10.1 8.28 0.082 1031 0 43.6 18.8 3.88 0.74 1.07 1.07 0.076 3.88 172 173 84.1 9.4 8.95 0.079 1019 0 44.6 20.0 3.88 0.77 0.95 0.95 0.074 3.88 179 180 129.9 39.0 3.33 0.070 1103 0 45.5 21.2 3.88 0.80 1.12 1.12 0.077 3.88 186 187 84.7 9.3 9.13 0.076 1112 0 46.4 22.5 3.88 0.84 0.94 0.94 0.078 3.88 193 194 88.2 10.8 8.18 0.084 1050 0 47.3 23.7 3.88 0.87 1.11 1.11 0.076 3.88 200 201 78.9 9.4 8.38 0.086 1064 0 48.1 25.0 3.88 0.90 0.98 0.98 0.080 3.88 207 208 88.1 9.2 9.54 0.067 1071 0 48.9 26.1 3.88 0.93 0.79 0.79 0.084 3.88 214 215 71.2 9.8 7.29 0.089 1128 0 49.7 27.2 3.88 0.97 1.03 1.03 0.080 3.88 221 222 74.9 11.4 6.56 0.095 1088 0 50.5 28.3 3.88 1.00 1.00 1.00 0.078 3.88 228 229 93.6 9.3 10.03 0.069 1086 0 51.2 29.3 3.88 1.03 1.01 1.01 0.081 3.88 235 236 90.1 9.6 9.35 0.075 1073 0 51.9 30.3 3.88 1.06 0.99 0.99 0.078 3.88 242 243 76.0 9.5 7.95 0.081 1087 0 52.4 31.4 4.00 1.09 0.93 0.93 0.075 3.88 249 250 90.9 10.5 8.69 0.072 1034 0 52.9 32.2 3.99 1.12 0.98 0.98 0.075 3.88 256 257 69.5 8.3 8.34 0.079 1091 0 53.5 33.2 3.88 1.16 0.92 0.92 0.076 3.88 263 264 81.4 8.8 9.26 0.068 1064 0 53.9 34.0 3.88 1.19 0.80 0.80 0.077 3.88 270 271 67.6 7.8 8.63 0.083 1093 0 54.3 34.9 3.99 1.22 0.92 0.92 0.078 3.88 277 278 88.5 14.2 6.23 0.082 1090 0 54.6 35.7 3.88 1.25 1.04 1.04 0.075 3.88 284 285 80.0 10.2 7.85 0.078 1056 0 54.9 36.3 4.02 1.28 0.99 0.99 0.077 3.88 291 292 90.7 9.7 9.38 0.067 1059 0 55.2 36.8 3.88 1.31 0.90 0.90 0.078 3.88 298 299 71.4 8.2 8.75 0.077 1072 0 55.5 37.3 3.88 1.35 0.91 0.91 0.075 3.88 305 306 66.5 9.9 6.70 0.089 1081 0 55.7 37.8 3.88 1.38 0.93 0.93 0.074 3.88 312 313 94.7 9.9 9.59 0.067 1105 0 55.9 38.2 3.88 1.41 0.92 0.92 0.072 3.88 319 320 80.2 8.0 10.05 0.073 1066 0 56.1 38.7 3.88 1.44 0.88 0.88 0.073 3.88 326 327 94.0 8.2 11.44 0.062 1042 0 56.2 39.2 3.98 1.47 0.89 0.89 0.072 3.88 333 334 66.3 7.4 9.00 0.079 1102 0 56.3 39.8 3.88 1.50 0.79 0.79 0.076 3.88 340 341 70.2 8.4 8.39 0.085 1149 0 56.5 40.6 3.88 1.54 0.96 0.96 0.075 3.88 347 348 76.9 9.5 8.12 0.083 1088 0 56.5 41.2 3.88 1.57 0.99 0.99 0.077 3.88 354 355 84.6 9.3 9.08 0.068 1031 0 56.6 41.7 3.99 1.60 0.91 0.91 0.079 3.88 361 362 83.1 8.2 10.17 0.069 1065 0 56.7 42.2 3.88 1.63 0.87 0.87 0.078 3.88 368 369 61.5 8.5 7.20 0.094 1168 0 56.8 42.7 3.88 1.67 0.89 0.89 0.077 3.98 375 376 82.6 9.9 8.36 0.081 1050 0 56.9 43.1 3.99 1.70 0.98 0.98 0.073 3.98 382 383 72.7 8.1 9.02 0.076 1088 0 57.0 43.4 4.04 1.73 0.84 0.84 0.075 3.99 389 390 115.0 8.4 13.74 0.055 1112 0 57.1 43.7 3.88 1.76 0.97 0.97 0.074 4.00 396 397 72.5 9.0 8.07 0.083 1053 0 57.2 43.9 4.00 1.79 0.99 0.99 0.073 4.00 403 404 82.5 10.1 8.18 0.082 1120 0 57.3 44.2 4.05 1.82 1.10 1.10 0.074 3.99 410 411 80.1 8.9 9.04 0.079 1099 0 57.4 44.5 3.88 1.86 1.01 1.01 0.082 4.00 417 418 79.0 8.5 9.35 0.079 1101 0 57.5 44.7 3.88 1.89 1.01 1.01 0.084 4.00 424 425 78.2 9.4 8.32 0.085 1127 0 57.6 44.9 4.01 1.92 1.00 1.00 0.086 3.99 431 432 69.0 9.6 7.18 0.097 1079 0 57.8 45.2 4.00 1.95 1.06 1.06 0.087 4.03 438 439 73.8 9.9 7.49 0.092 1040 0 57.8 45.5 3.98 1.99 1.01 1.01 0.087 4.04 445 446 78.5 9.6 8.13 0.086 1091 0 58.0 45.7 4.08 2.02 0.98 0.98 0.089 4.05 452 453 80.3 8.7 9.26 0.079 1079 0 58.1 46.0 4.05 2.05 0.97 0.97 0.084 4.03 459 460 66.1 9.0 7.35 0.094 1112 0 58.2 46.2 4.08 2.08 1.05 1.05 0.085 4.04 466 467 87.9 10.0 8.80 0.071 1151 0 58.3 46.5 3.88 2.12 0.88 0.88 0.084 4.02 473 474 66.1 9.8 6.76 0.102 1099 0 58.4 46.8 4.09 2.15 1.10 1.10 0.081 4.01 480 481 81.9 9.0 9.06 0.081 1094 0 58.5 47.1 4.03 2.18 0.97 0.97 0.079 3.98 487 488 95.6 9.0 10.67 0.065 1056 0 58.6 47.4 3.99 2.21 0.91 0.91 0.079 4.04 494 495 76.4 10.0 7.66 0.087 1056 0 58.7 47.8 3.88 2.25 1.04 1.04 0.077 4.02 501 502 95.6 9.7 9.85 0.068 1036 0 58.9 48.1 4.17 2.28 0.96 0.96 0.078 4.04 508 509 72.5 9.3 7.81 0.087 1088 0 59.0 48.4 4.02 2.31 0.93 0.93 0.083 4.03 515 516 84.6 10.8 7.82 0.087 1071 0 59.1 48.8 4.07 2.34 1.06 1.06 0.083 4.04 522 523 72.5 9.1 8.00 0.088 1053 0 59.2 49.1 3.88 2.37 1.01 1.01 0.086 4.02 529 530 75.2 10.2 7.40 0.090 1032 0 59.4 49.5 3.99 2.40 1.08 1.08 0.086 4.02 536 537 92.8 13.8 6.73 0.078 1057 0 59.5 49.9 4.02 2.44 1.06 1.06 0.084 4.01 543 544 78.4 10.8 7.28 0.086 1078 0 59.8 50.3 3.98 2.47 0.97 0.97 0.083 4.02 550 551 80.2 9.2 8.71 0.080 1004 0 60.0 50.6 4.06 2.50 0.98 0.98 0.083 4.03 557 558 76.3 9.2 8.28 0.083 1120 0 60.2 51.0 4.09 2.53 0.96 0.96 0.085 4.02 564 565 76.9 10.2 7.56 0.087 1077 0 60.4 51.4 4.01 2.57 0.94 0.94 0.085 4.03 571 572 75.5 9.9 7.64 0.090 1024 0 60.6 51.8 4.00 2.60 1.03 1.03 0.086 4.01 578 579 86.9 11.0 7.88 0.084 971 0 60.9 52.1 4.07 2.63 1.08 1.08 0.086 4.00 585 586 79.9 9.5 8.39 0.086 1020 0 61.2 52.4 3.88 2.66 1.05 1.05 0.087 3.98 592 593 83.1 10.9 7.64 0.081 1021 0 61.5 52.7 4.00 2.69 1.03 1.03 0.080 3.88 599 600 63.5 8.9 7.18 0.096 1022 0 62.0 53.0 3.88 2.72 0.93 0.93 0.081 3.88 606 607 106.1 11.0 9.64 0.062 998 0 62.4 53.3 3.88 2.75 0.85 0.85 0.082 3.88 613 614 79.4 12.9 6.17 0.085 1091 0 63.0 53.6 3.88 2.78 0.94 0.94 0.082 3.88 620 621 77.7 11.0 7.08 0.094 996 0 63.5 53.8 3.88 2.81 1.13 1.13 0.079 3.88 627 628 76.6 8.6 8.95 0.082 988 0 64.0 54.1 3.98 2.84 0.96 0.96 0.086 3.88 634 635 80.9 9.5 8.48 0.077 1004 0 64.6 54.4 3.88 2.87 0.94 0.94 0.085 3.88 641 642 77.8 17.8 4.38 0.091 1012 0 65.1 54.6 3.88 2.90 1.03 1.03 0.082 3.88 648 649 83.9 10.5 7.99 0.081 962 0 65.6 55.0 4.02 2.93 1.06 1.06 0.083 3.88 655 656 83.1 9.7 8.58 0.079 996 0 66.2 55.4 3.88 2.96 1.00 1.00 0.087 3.88 662 663 67.9 8.4 8.05 0.087 892 0 66.8 55.9 4.10 2.99 0.88 0.88 0.085 3.88 669 670 71.1 10.5 6.78 0.097 1025 0 67.4 56.3 3.88 3.02 1.10 1.10 0.085 3.88 676 677 81.2 10.9 7.45 0.085 932 0 67.8 56.9 3.88 3.05 1.10 1.10 0.086 3.88 683 684 86.3 9.2 9.36 0.077 933 0 68.4 57.4 3.99 3.08 0.99 0.99 0.084 3.88 690 691 75.0 9.1 8.28 0.086 964 0 68.9 58.0 3.88 3.11 1.01 1.01 0.082 3.88 697 698 83.3 9.1 9.17 0.078 953 0 69.5 58.7 3.88 3.14 0.95 0.95 0.082 3.88 704 705 88.0 9.7 9.09 0.083 914 0 70.2 59.3 3.88 3.17 1.09 1.09 0.082 3.88 711 712 88.0 26.0 3.38 0.085 994 0 70.9 60.0 3.88 3.20 1.08 1.08 0.080 3.88 718 719 79.6 10.2 7.83 0.077 903 0 71.5 60.6 3.88 3.23 1.01 1.01 0.082 3.88 725 726 75.0 9.0 8.35 0.079 889 0 72.1 61.2 4.01 3.26 0.95 0.95 0.084 3.88 732 733 73.3 9.2 7.96 0.089 890 0 72.7 61.7 3.88 3.29 0.95 0.95 0.085 3.88 739 740 71.6 12.4 5.76 0.092 938 0 73.2 62.5 3.88 3.32 1.09 1.09 0.082 3.88 746 747 78.6 9.2 8.59 0.087 926 0 73.9 63.1 3.88 3.34 1.01 1.01 0.080 3.88 753 754 119.8 33.4 3.59 0.070 912 0 74.6 63.8 3.88 3.37 0.95 0.95 0.077 3.88 760 761 91.4 10.5 8.68 0.070 840 0 75.1 64.4 3.88 3.40 0.98 0.98 0.077 3.88 767 768 90.9 9.7 9.34 0.068 896 0 75.8 65.1 4.03 3.43 0.94 0.94 0.077 3.88 774 775 70.9 9.5 7.49 0.095 927 0 76.4 65.8 4.00 3.46 1.15 1.15 0.077 3.88 781 782 77.7 11.6 6.68 0.085 904 0 77.0 66.6 3.98 3.49 1.06 1.06 0.079 3.88 788 789 89.0 8.9 10.03 0.070 906 0 77.7 67.3 3.88 3.52 0.90 0.90 0.081 3.88 795 796 75.4 9.3 8.10 0.084 870 0 78.2 68.0 3.88 3.54 1.01 1.01 0.078 3.88 802 803 83.8 9.2 9.11 0.074 905 0 78.7 68.9 3.88 3.57 0.97 0.97 0.077 3.88 809 810 84.3 11.4 7.40 0.077 903 0 79.3 69.7 3.88 3.60 0.96 0.96 0.079 3.88 816 817 74.5 8.7 8.56 0.081 883 0 79.8 70.4 3.88 3.63 0.95 0.95 0.080 3.88 823 824 71.9 8.4 8.60 0.079 922 0 80.4 71.3 4.06 3.66 0.96 0.96 0.082 3.88 830 831 66.4 8.4 7.91 0.091 940 0 80.8 72.2 3.88 3.69 1.02 1.02 0.084 3.88 837 838 75.8 8.9 8.54 0.083 833 0 81.3 72.9 3.98 3.71 1.03 1.03 0.078 3.88 844 845 77.8 9.4 8.30 0.084 852 0 81.6 73.7 3.88 3.74 1.05 1.05 0.075 3.88 851 852 109.3 20.4 5.36 0.064 919 0 82.2 74.5 3.88 3.77 1.01 1.01 0.074 3.88 858 859 101.8 11.4 8.92 0.064 799 0 82.3 75.2 3.88 3.79 0.97 0.97 0.069 3.88 865 866 74.6 9.2 8.15 0.081 1041 0 82.9 75.9 3.88 3.83 0.99 0.99 0.068 3.88 872 873 136.3 39.7 3.44 0.058 778 0 83.0 76.3 3.88 3.85 0.89 0.89 0.071 3.88 879 880 83.9 12.6 6.64 0.081 858 0 83.4 76.7 3.88 3.88 0.98 0.98 0.073 3.88 886 887 86.5 11.6 7.44 0.077 929 0 83.7 77.0 4.01 3.91 1.03 1.03 0.062 3.88 893 894 83.8 10.7 7.82 0.074 969 0 84.0 77.4 3.88 3.94 1.03 1.03 0.066 3.88 900 901 171.2 27.5 6.23 0.041 855 0 84.1 77.7 4.02 3.96 1.01 1.01 0.057 3.88 907 908 80.5 8.7 9.24 0.084 837 0 84.2 78.1 3.88 3.99 0.93 0.93 0.057 3.88 914 915 181.5 29.2 6.21 0.043 877 0 84.3 78.5 3.88 4.01 1.11 1.11 0.056 3.88 921 922 85.0 9.8 8.70 0.084 852 0 84.4 78.9 3.88 4.04 1.06 1.06 0.062 3.88 928 929 130.8 24.2 5.41 0.063 922 0 84.5 79.4 3.88 4.06 1.06 1.05 0.062 3.88 935 936 116.4 31.7 3.67 0.064 930 0 84.6 79.9 3.88 4.09 0.90 0.90 0.073 3.88 942 943 75.3 8.4 8.99 0.080 925 0 84.6 80.3 3.88 4.12 0.95 0.95 0.070 3.88 949 950 71.3 8.4 8.53 0.085 913 0 84.8 80.6 3.88 4.14 0.96 0.96 0.074 3.88 956 957 126.9 10.1 12.53 0.070 964 0 84.8 80.8 3.98 4.17 1.02 1.02 0.081 3.88 963 964 73.8 8.3 8.88 0.084 835 0 84.9 80.9 3.88 4.20 1.02 1.02 0.082 3.88 970 971 74.2 9.0 8.29 0.091 906 0 85.0 81.0 3.88 4.22 0.90 0.90 0.080 3.88 977 978 67.8 7.8 8.71 0.086 1018 0 85.0 81.1 3.88 4.25 0.96 0.96 0.085 3.88 984 985 80.4 10.1 7.93 0.074 899 0 85.1 81.2 3.88 4.28 0.86 0.86 0.085 3.88 989 990 66.7 10.0 6.65 0.096 446 0 85.1 81.2 3.88 4.29 1.15 1.15 0.085 3.88 $$ N Batch Mn(I) RMSdev I/rms Rmerge Number Nrej Cm%poss AnoCmp MaxRes CMlplc Chi^2 Chi^2c SmRmerge SmMaxRes Correlation coefficients for anomalous differences & Imean between random half-datasets (CC1/2) =============================================================================================== CC(1/2) values (for Imean and anomalous differences) are calculated by splitting the data randomly in half CC(1/2)v for Imean is calculated from variances, see Assmann, Brehm & Diederichs(2016),J.Appl.Cryst.49,1021-1028) The RMS Correlation Ratio (RCR) is calculated from a scatter plot of pairs of DeltaI(anom) from the two subsets (halves) by comparing the RMS value (excluding extremes) projected on the line with slope = 1 ('correlation') with the RMS value perpendicular to this ('error'). This ratio will be > 1 if there is a significant anomalous signal Rsplit = (1/Sqrt(2)) Sum (|I1 - I2|)/0.5*Sum(I1 + I2) where I1,I2 are the half-dataset intensities as for CC(1/2) Note that internal R-factors of any sort are deprecated as metrics for assessment of effective resolution Estimates of maximum resolution for intensities and anomalous differences, based on the point at which CC(1/2) falls below a threshold Curve fitting as suggested by Ed Pozharski to a tanh function of the form (1/2)(1 - tanh(z)) where z = (s - d0)/r, s = 1/d^2, d0 is the value of s at the half-falloff value, and r controls the steepness of falloff Estimate of resolution limit for intensities: Threshold (see ANALYSIS keyword): 0.30 Resolution limit determined from a curve fit to the function (1/2)(1 - tanh((s - d0)/r)) All scores are above the threshold, ie data extends to the maximum resolution of 3.88A Estimate of resolution limit for significant anomalous differences: Threshold (see ANALYSIS keyword): 0.15 Resolution limit determined from a linear fit All scores are below the threshold, ie there is no apparent anomalous signal from CCanom $TABLE: Correlations CC(1/2) within dataset, XDSdataset: $GRAPHS: CC(1/2) v resolution, max resolution 3.88, anom 0.00:0|0.0665888x-0.137201|1:2,4,7,9,11,12: : RMS anomalous correlation ratio :0|0.0665888x0|1.0446:2,6: : Rsplit :0|0.0665888x0|0.549197:2,9: $$ N 1/d^2 Dmid CCanom Nanom RCRanom CC1/2 NCC1/2 CC1/2v Rsplit CCfit CCanomfit $$ $$ 1 0.0033 17.33 -0.137 336 0.872 1.000 603 1.000 0.021 1.000 -0.024 2 0.0100 10.01 -0.056 722 0.946 0.999 1051 0.999 0.022 1.000 -0.024 3 0.0166 7.75 -0.026 925 0.975 0.998 1336 0.998 0.040 0.999 -0.023 4 0.0233 6.55 -0.037 1230 0.964 0.992 1566 0.992 0.087 0.999 -0.023 5 0.0300 5.78 -0.027 1301 0.974 0.985 1758 0.986 0.129 0.997 -0.023 6 0.0366 5.23 0.044 1536 1.045 0.991 1939 0.992 0.124 0.993 -0.022 7 0.0433 4.81 0.007 1545 1.007 0.992 2004 0.993 0.122 0.983 -0.022 8 0.0499 4.47 -0.006 1203 0.994 0.983 1766 0.989 0.169 0.961 -0.021 9 0.0566 4.20 -0.027 613 0.973 0.954 1374 0.956 0.276 0.913 -0.021 10 0.0633 3.98 -0.073 325 0.931 0.782 970 0.811 0.549 0.819 -0.021 $$ Overall: -0.046 9736 0.956 1.000 14367 0.972 0.062 CCanom Nanom RCRanom CC1/2 NCC1/2 CC1/2v Rsplit CCfit CCanomfit Analysis of anisotropy of data ============================== Mn(I/sd) and half-dataset correlation coefficients CC(1/2) are analysed by resolution within an maxangle of 20 degrees of principal axes of anisotropy weighted according to angle, w = [cos(angle) - cos(maxangle)]/[1 - cos(maxangle)], Principal axes are along a*, b*, c* Eigenvalues of [B](orth) along principal axes : 43.442 -37.960 -5.482 Difference between maximum and minimum anisotropic B (= 8 pi^2 U) 81.4 Estimated maximum resolution limits, a*: 3.88, b*: 3.88, c*: 4.06 Columns 'CCft' are values from curve-fitting as for overall analysis $TABLE: Anisotropy analysis of CC(1/2) and I/sd, XDSdataset: $GRAPHS: Anisotropic CC(1/2) v resolution:0|0.0665888x0|1:2,4,5,6,13,14,15: : Anisotropic Mn(I/sd) v resolution:0|0.0665888x0|45.4146:2,7,8,9: : Projected CC(1/2) v resolution:0|0.0665888x0|1:2,10,11,12: $$ N 1/d^2 Dmid CC:a* CC:b* CC:c* I/sd:a* I/sd:b* I/sd:c* CCp1 CCp2 CCp3 CCft:a* CCft:b* CCft:c* $$ $$ 1 0.0033 17.33 1.000 1.000 1.000 45.41 45.41 45.41 1.000 1.000 1.000 1.000 0.958 1.000 2 0.0100 10.01 0.998 1.000 0.999 29.27 37.84 40.83 0.995 0.998 0.998 1.000 0.943 1.000 3 0.0166 7.75 0.998 0.992 0.997 24.38 14.04 22.70 0.988 0.960 0.989 1.000 0.922 1.000 4 0.0233 6.55 0.998 0.909 0.987 20.14 5.47 10.50 0.988 0.808 0.966 1.000 0.895 0.999 5 0.0300 5.78 0.994 0.868 0.971 16.40 2.88 7.09 0.990 0.735 0.967 0.999 0.860 0.997 6 0.0366 5.23 0.998 0.710 0.967 21.39 1.84 6.24 0.994 0.539 0.920 0.998 0.816 0.989 7 0.0433 4.81 0.994 0.588 0.957 21.44 1.65 5.95 0.990 0.441 0.888 0.996 0.762 0.953 8 0.0499 4.47 0.994 0.884 0.827 13.31 2.00 3.72 0.933 - 0.783 0.990 0.698 0.821 9 0.0566 4.20 0.978 - 0.508 6.89 - 1.33 0.716 - 0.465 0.979 0.625 0.512 10 0.0633 3.98 - - - 4.17 - 0.69 - - - 0.954 0.545 0.193 $$ Overall: 1.000 1.000 1.000 31.68 26.87 25.06 1.000 1.000 1.000 0.0 0.0 0.0 CC:a* CC:b* CC:c* I/sd:a* I/sd:b* I/sd:c* CCp1 CCp2 CCp3 CCft:a* CCft:b* CCft:c* Cumulative CC(1/2) analysed by Batch for each dataset ===================================================== Analysis by Batch is in groups of batches, group width 1.00 degrees, 7 batches/group $TABLE: Cumulative CC(1/2) in resolution ranges vs. Batch: $GRAPHS:Cumulative CC(1/2):N:1,4,5,6,7: $$ N Run Batch 8.67-6.13 6.13-5.00 5.00-4.33 4.33-3.88 $$ $$ 4 1 5 - - - - 11 1 12 1.00 0.99 0.99 - 18 1 19 0.98 0.97 0.98 - 25 1 26 0.98 0.96 0.99 - 32 1 33 0.99 0.99 0.96 0.49 39 1 40 0.98 0.96 0.97 0.49 46 1 47 0.99 0.95 0.97 0.49 53 1 54 0.99 0.96 0.98 0.49 60 1 61 0.99 0.96 0.96 0.97 67 1 68 0.99 0.98 0.97 0.50 74 1 75 0.99 0.98 0.95 0.98 81 1 82 0.98 0.97 0.98 0.44 88 1 89 0.99 0.98 0.98 0.44 95 1 96 0.99 0.96 0.98 0.95 102 1 103 0.99 0.96 0.97 0.48 109 1 110 0.99 0.96 0.94 0.87 116 1 117 0.99 0.95 0.97 0.81 123 1 124 0.99 0.99 0.97 0.82 130 1 131 0.99 0.96 0.98 0.97 137 1 138 0.99 0.99 0.97 0.86 144 1 145 0.99 0.97 0.99 0.78 151 1 152 0.99 0.98 0.98 0.92 158 1 159 0.99 0.97 0.97 0.86 165 1 166 0.99 0.96 0.98 0.79 172 1 173 0.99 0.98 0.95 0.92 179 1 180 0.99 0.97 0.98 0.88 186 1 187 0.99 0.98 0.98 0.77 193 1 194 0.98 0.97 0.98 0.86 200 1 201 0.99 0.96 0.97 0.94 207 1 208 0.99 0.99 0.98 0.90 214 1 215 0.98 0.97 0.96 0.76 221 1 222 0.99 0.96 0.94 0.89 228 1 229 0.99 0.98 0.97 0.89 235 1 236 0.99 0.98 0.98 0.78 242 1 243 0.99 0.98 0.97 0.59 249 1 250 0.99 0.98 0.97 0.77 256 1 257 0.99 0.98 0.95 0.89 263 1 264 0.99 0.98 0.93 0.78 270 1 271 0.99 0.97 0.97 0.78 277 1 278 0.99 0.98 0.97 0.76 284 1 285 0.99 0.98 0.98 0.79 291 1 292 0.99 0.98 0.96 0.61 298 1 299 0.99 0.98 0.94 0.90 305 1 306 0.99 0.98 0.97 0.62 312 1 313 0.98 0.98 0.95 0.65 319 1 320 0.99 0.97 0.95 0.71 326 1 327 0.99 0.99 0.98 0.69 333 1 334 0.99 0.98 0.96 0.86 340 1 341 1.00 0.98 0.97 0.75 347 1 348 0.99 0.98 0.96 0.76 354 1 355 1.00 0.98 0.97 0.77 361 1 362 1.00 0.99 0.94 0.73 368 1 369 0.99 0.99 0.98 0.77 375 1 376 0.99 0.98 0.98 0.50 382 1 383 0.99 0.98 0.98 0.71 389 1 390 0.99 0.99 0.96 0.69 396 1 397 0.99 0.98 0.98 0.66 403 1 404 0.99 0.99 0.97 0.73 410 1 411 0.99 0.98 0.97 0.76 417 1 418 1.00 0.98 0.97 0.65 424 1 425 0.99 0.99 0.95 0.67 431 1 432 0.99 0.99 0.96 0.70 438 1 439 0.99 0.97 0.96 0.79 445 1 446 0.99 0.99 0.95 0.66 452 1 453 0.99 0.98 0.97 0.76 459 1 460 0.99 0.98 0.97 0.77 466 1 467 0.99 0.99 0.97 0.91 473 1 474 1.00 0.99 0.98 0.82 480 1 481 0.99 0.98 0.96 0.66 487 1 488 0.99 0.99 0.99 0.76 494 1 495 0.99 0.99 0.94 0.80 501 1 502 1.00 0.99 0.98 0.64 508 1 509 1.00 0.99 0.99 0.72 515 1 516 0.99 0.96 0.97 0.77 522 1 523 0.99 0.99 0.97 0.80 529 1 530 1.00 0.99 0.96 0.90 536 1 537 0.99 0.98 0.94 0.72 543 1 544 0.99 0.98 0.95 0.67 550 1 551 0.99 0.98 0.96 0.72 557 1 558 0.99 0.97 0.99 0.68 564 1 565 0.99 0.98 0.98 0.78 571 1 572 0.99 0.99 0.97 0.74 578 1 579 1.00 0.96 0.98 0.80 585 1 586 0.99 0.98 0.96 0.83 592 1 593 0.99 0.97 0.95 0.87 599 1 600 0.98 0.99 0.98 0.96 606 1 607 0.99 0.97 0.97 0.96 613 1 614 0.99 0.98 0.93 0.91 620 1 621 0.99 0.99 0.97 0.79 627 1 628 0.99 0.99 0.97 0.64 634 1 635 1.00 0.97 0.96 0.87 641 1 642 0.99 0.98 0.98 0.90 648 1 649 0.97 0.97 0.97 0.75 655 1 656 0.99 0.99 0.98 0.92 662 1 663 0.99 0.99 0.99 0.44 669 1 670 0.98 0.96 0.97 0.88 676 1 677 0.99 0.98 0.98 0.77 683 1 684 0.99 0.96 0.96 0.82 690 1 691 0.99 0.98 0.98 0.80 697 1 698 0.99 0.98 0.95 0.52 704 1 705 0.99 0.96 0.98 0.88 711 1 712 0.99 0.94 0.99 0.89 718 1 719 0.98 0.97 0.95 0.89 725 1 726 0.99 0.96 0.98 0.78 732 1 733 0.99 0.97 0.97 0.82 739 1 740 0.99 0.94 0.97 0.81 746 1 747 0.97 0.99 0.98 0.86 753 1 754 0.99 0.96 0.98 0.85 760 1 761 1.00 0.98 0.98 0.81 767 1 768 0.99 0.98 0.99 0.71 774 1 775 0.98 0.96 0.97 0.89 781 1 782 0.99 0.99 0.98 0.90 788 1 789 0.99 0.97 0.95 0.78 795 1 796 0.99 0.96 0.99 0.78 802 1 803 0.99 0.95 0.98 0.80 809 1 810 0.98 0.94 0.98 0.94 816 1 817 0.99 0.97 0.97 0.59 823 1 824 0.99 0.98 0.95 0.82 830 1 831 0.98 0.98 0.97 0.85 837 1 838 0.97 0.98 0.97 0.55 844 1 845 0.99 0.97 0.98 0.69 851 1 852 0.98 0.98 0.96 0.88 858 1 859 0.99 0.99 0.98 0.77 865 1 866 0.98 0.97 0.98 0.77 872 1 873 0.99 0.98 0.98 0.74 879 1 880 0.99 0.97 0.93 0.81 886 1 887 0.98 0.97 0.97 0.82 893 1 894 0.98 0.99 0.98 0.79 900 1 901 0.98 0.95 0.88 0.76 907 1 908 0.97 0.95 0.98 0.68 914 1 915 0.98 0.96 0.94 0.49 921 1 922 0.99 0.98 0.96 0.71 928 1 929 1.00 0.99 0.99 0.78 935 1 936 0.99 0.96 0.97 0.53 942 1 943 0.99 0.98 0.98 0.55 949 1 950 0.99 0.99 0.99 0.68 956 1 957 0.99 0.99 0.97 0.64 963 1 964 1.00 0.98 0.94 0.82 970 1 971 0.99 0.95 0.97 0.84 977 1 978 0.99 0.96 0.98 0.73 984 1 985 0.99 0.99 0.98 0.88 989 1 990 1.00 0.96 0.98 0.81 $$ N Run Batch 8.67-6.13 6.13-5.00 5.00-4.33 4.33-3.88 Analysis by 4sinTheta/Lambda^2 bins (all statistics use Mn(I+),Mn(I-)etc) ========================================================================= Rmrg :- conventional Rmerge = Sum(|Ihl - < Ih >|)/Sum(< Ih >) Rcum :- Rmrg up to this range Rfull :- Rmrg for fully-recorded observations only Rmeas :- multiplicity-independent R = Sum(Sqrt(N/(N-1))(|Ihl - < Ih >|))/Sum(< Ih >) Rpim :- Precision-indicating R = Sum(Sqrt(1/(N-1))(|Ihl - < Ih >|))/Sum(< Ih >) Nmeas :- Number of observations used in statistics AvI :- unmerged Ihl averaged in bin < Ihl > RMSdev :- rms scatter of observations from mean < Ih > I/RMS :- < Ihl > / rms scatter = Av_I/RMSdev sd :- average standard deviation derived from experimental SDs, after application of SdFac SdB SdAdd 'correction' terms Mn(I/sd):- average < merged< Ih >/sd(< Ih >) > ~= signal/noise Frcbias :- partial bias = Mean( Mn(If) - Ip )/Mean( Mn(I) ) for mixed sets only (If is a full if present, else the partial with the smallest number of parts) Chi^2 :- mean goodness of fit, all data Chi^2c :- mean goodness of fit, excluding large differences All statistics in this table are relative to the overall mean I+/- (anomalous off) Mean Chi^2 values are calculated for all data, and also excluding observations with large deviations >5sd, including for reflections measured only twice $TABLE: Analysis against resolution, XDSdataset: $GRAPHS:I/sigma, Mean Mn(I)/sd(Mn(I)):0|0.0665888x0|45.4146:2,13,14: :Filtered Mean(Chi^2)(<5sd) v Resolution:N:2,17: :Mean(Chi^2), Mean(Chi^2)(<5sd) v Resolution:N:2,16,17: :Rmerge, Rfull, Rmeas, Rpim v Resolution:0|0.0665888x0|0.646235:2,4,5,7,8: :Average I, RMSdeviation and Sd:0|0.0665888x0|666.436:2,10,11,12: :Fractional bias:0|0.0665888x0|1:2,15: $$ N 1/d^2 Dmid Rmrg Rfull Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias Chi^2 Chi^2c $$ $$ 1 0.0033 17.33 0.023 0.023 0.023 0.027 0.013 2827 666 46 22 14.5 45.4 - 0.91 0.91 2 0.0100 10.01 0.029 0.029 0.026 0.032 0.014 5557 305 13 13 22.8 40.9 - 0.91 0.91 3 0.0166 7.75 0.055 0.055 0.031 0.061 0.027 6946 103 8 8 12.9 22.4 - 0.94 0.94 4 0.0233 6.55 0.128 0.128 0.038 0.141 0.058 8831 40 7 7 6.1 11.8 - 0.96 0.96 5 0.0300 5.78 0.166 0.166 0.046 0.184 0.080 9210 33 7 8 4.7 9.0 - 0.97 0.97 6 0.0366 5.23 0.183 0.183 0.055 0.203 0.085 10743 34 8 8 4.3 8.6 - 1.01 1.01 7 0.0433 4.81 0.190 0.190 0.065 0.211 0.089 11126 38 9 10 4.1 8.6 - 1.07 1.07 8 0.0499 4.47 0.242 0.242 0.074 0.271 0.118 8941 32 10 10 3.3 6.5 - 1.05 1.05 9 0.0566 4.20 0.319 0.319 0.078 0.371 0.182 5423 23 9 10 2.5 3.8 - 0.98 0.98 10 0.0633 3.98 0.540 0.540 0.082 0.646 0.344 3273 14 9 11 1.5 2.0 - 0.99 0.99 $$ Overall: 0.082 0.082 0.082 0.092 0.040 72877 85 13 10 6.8 12.8 0.000 0.99 0.99 N 1/d^2 Dmid Rmrg Rfull Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias Chi^2 Chi^2c By 4sinTheta/Lambda^2 bins (statistics with and without anomalous) ================================================================== Statistics labelled 'Ov' are relative to the overall mean I+/-, ignoring anomalous Other statistics are with either I+ or I- sets, for acentrics, ie with anomalous $TABLE: Analysis against resolution, with & without anomalous (Ov), XDSdataset: $GRAPHS:Rmerge, Rmeas, Rpim v Resolution:0|0.0665888x0|0.646235:2,4,5,8,9,10,11: $$ N 1/d^2 Dmid Rmrg RmrgOv Rcum RcumOv Rmeas RmeasOv Rpim RpimOv Nmeas $$ $$ 1 0.0033 17.33 0.022 0.023 0.022 0.023 0.028 0.027 0.016 0.013 2827 2 0.0100 10.01 0.026 0.029 0.024 0.026 0.032 0.032 0.018 0.014 5557 3 0.0166 7.75 0.051 0.055 0.029 0.031 0.062 0.061 0.036 0.027 6946 4 0.0233 6.55 0.117 0.128 0.035 0.038 0.142 0.141 0.079 0.058 8831 5 0.0300 5.78 0.148 0.166 0.042 0.046 0.183 0.184 0.106 0.080 9210 6 0.0366 5.23 0.165 0.183 0.051 0.055 0.202 0.203 0.114 0.085 10743 7 0.0433 4.81 0.180 0.190 0.060 0.065 0.219 0.211 0.124 0.089 11126 8 0.0499 4.47 0.232 0.242 0.067 0.074 0.286 0.271 0.165 0.118 8941 9 0.0566 4.20 0.287 0.319 0.071 0.078 0.367 0.371 0.225 0.182 5423 10 0.0633 3.98 0.483 0.540 0.074 0.082 0.637 0.646 0.411 0.344 3273 $$ Overall: 0.074 0.082 0.074 0.082 0.091 0.092 0.052 0.040 72877 N 1/d^2 Dmid Rmrg RmrgOv Rcum RcumOv Rmeas RmeasOv Rpim RpimOv Nmeas By intensity bins ================= All statistics in this table are relative to the overall mean I+/- (anomalous off) $TABLE: Analysis against intensity, XDSdataset: $GRAPHS:Rmerge v Intensity:N:1,2,4,5: $$ Imax Rmrg Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias $$ $$ 5 1.180 1.180 1.328 0.594 25682 5 8 9 0.7 1.4 - 19 0.311 0.587 0.348 0.152 14645 19 8 8 2.5 5.5 - 35 0.174 0.413 0.194 0.083 8750 35 8 8 4.4 10.2 - 52 0.116 0.325 0.128 0.055 5784 52 8 8 6.6 15.2 - 73 0.084 0.272 0.093 0.040 3956 73 8 9 9.3 19.9 - 97 0.065 0.233 0.072 0.031 3057 97 8 9 11.9 25.2 - 128 0.053 0.205 0.059 0.025 2292 128 9 9 14.8 30.6 - 170 0.043 0.181 0.049 0.021 1997 171 9 10 18.2 35.6 - 234 0.035 0.154 0.040 0.017 2196 234 11 12 22.2 43.4 - 858 0.024 0.082 0.027 0.012 4518 758 40 26 19.2 58.2 - $$ Overall: 0.082 0.082 0.092 0.040 72877 85 13 10 6.8 12.8 0.000 Imax Rmrg Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias Completeness and multiplicity, including reflections measured only once ======================================================================= %poss is completeness in the shell, C%poss in cumulative to that resolution The anomalous completeness values (AnomCmpl) are the percentage of possible anomalous differences measured AnomFrc is the % of measured acentric reflections for which an anomalous difference has been measured Anomalous multiplicity AnoMlt is calculated for reflections with both I+ and I- measured, and is defined as: Sum{[Min(n+, n-) + Dn/(Dn+1)]}/NanomMeasured, where n+, n- are the number of measurements of I+, I-, Dn = |n+ - n-| $TABLE: Completeness & multiplicity v. resolution, XDSdataset: $GRAPHS:Completeness v Resolution :N:2,7,8,10,11: :Multiplicity v Resolution:0|0.0665888x0|5.62444:2,9,12: $$ N 1/d^2 Dmid Nmeas Nref Ncent %poss C%poss Mlplct AnoCmp AnoFrc AnoMlt $$ $$ 1 0.0033 17.33 2852 628 214 98.4 98.4 4.5 98.8 99.0 2.7 2 0.0100 10.01 5573 1067 230 100.0 99.4 5.2 99.3 99.3 2.9 3 0.0166 7.75 6966 1356 241 100.0 99.7 5.1 99.1 99.1 2.8 4 0.0233 6.55 8836 1571 226 99.9 99.7 5.6 99.9 99.9 3.0 5 0.0300 5.78 9236 1784 236 99.9 99.8 5.2 98.4 98.4 2.8 6 0.0366 5.23 10756 1952 231 99.8 99.8 5.5 98.8 98.9 2.9 7 0.0433 4.81 11157 2035 200 97.1 99.2 5.5 95.9 98.1 2.9 8 0.0499 4.47 9017 1842 156 83.3 96.4 4.9 79.0 94.0 2.6 9 0.0566 4.20 5608 1559 96 66.0 91.4 3.6 58.0 86.1 2.0 10 0.0633 3.98 3484 1181 50 48.0 85.1 3.0 38.8 78.7 1.7 $$ Overall: 73485 14975 1880 85.1 85.1 4.9 81.2 95.1 2.7 Nmeas Nref Ncent %poss C%poss Mlplct AnoCmp AnoFrc AnoMlt Analysis of standard deviations =============================== This analyses the distribution of the normalised deviations Delta = (Ihl - Mn(Iothers) )/sqrt[sd(Ihl)**2 + sd(Mn(I))**2] If the SD is a true estimate of the error, this distribution should have Mean=0.0 and Sigma=1.0 for all ranges of intensity The analysis is repeated for ranges of increasing Imean The Mean is expected to increase with Imean since the latter is a weighted mean and sd(Ihl) & Ihl are correlated If the Sigma increases with Imean, increase the value of SdAdd ISa is the predicted asymptotic value of I/sd(I) for large I, see K.Diederichs, Acta Cryst. D66,733 SD corrections:- SdFac * Sqrt[sd(I)**2 + SdB I + (SdAdd I)**2] Fulls Run SdFac SdB SdAdd ISa 1 OnlyFulls 0.93 0.24 -0.0157 0.0 $TABLE: Run 1, standard deviation v. Intensity, XDSdataset: $GRAPHS: Sigma(scatter/SD), Mn(Chi^2), within 5 sd:N:2,9,10: : Sigma(scatter/SD), Mn(Chi^2), within 5 sd, all and within 5 sd:N:2,5,6,9,10: Fulls, all Fulls, < 5 sd $$ Range Mn(I) NF MnF SdF ChiSqF NFc MnFc SdFc ChiSqFc $$ $$ 1 5 25682 0.00 1.00 0.99 25680 0.00 1.00 0.99 2 19 14645 0.01 1.00 1.00 14645 0.01 1.00 1.00 3 35 8750 0.01 1.02 1.03 8750 0.01 1.02 1.03 4 52 5784 0.01 1.00 1.01 5784 0.01 1.00 1.01 5 73 3956 0.01 0.98 0.97 3956 0.01 0.98 0.97 6 97 3057 0.01 0.97 0.95 3057 0.01 0.97 0.95 7 128 2292 0.02 0.98 0.96 2292 0.02 0.98 0.96 8 170 1997 0.02 0.99 0.99 1997 0.02 0.99 0.99 9 234 2196 0.02 0.98 0.96 2196 0.02 0.98 0.96 10 858 4518 0.03 0.98 0.96 4518 0.03 0.98 0.96 $$ Overall: 72877 0.01 1.00 0.99 72875 0.01 1.00 0.99 Cumulative radiation damage analysis ==================================== At present this analysis is done only if there is a single run Note that this analysis will not be useful if the multiplicity is low Rcp is the cumulative pairwise residual devised by Graeme Winter for the program CHEF, inspired by Diederichs Rd statistic (Acta Cryst D62, 96-101 (2005)) Rcp(k) = Sum(||Ii - Ij||)/Sum(0.5*(Ii + Ij)) where i & j are the batch numbers (proxy for radiation dose) and k = Max(i, j) ie a pairwise R-factor up to batch k CmPoss is cumulative completeness Batches are binned in groups of 7, ~= 1.0 degrees $TABLE: Radiation damage analysis for run 1: $GRAPHS:Rcp v. batch:N:2,9,3: :Rcp v. batch, in shells:N:2,4,5,6,7,8: $$ N Batch CmPoss R1 R2 R3 R4 R5 Rcp $$ $$ 1 5 0.023 - - - - - - 2 12 0.053 0.034 0.384 0.579 0.656 - 0.084 3 19 0.080 0.066 0.197 0.304 0.642 - 0.089 4 26 0.107 0.069 0.215 0.344 0.517 - 0.095 5 33 0.132 0.063 0.173 0.295 0.555 - 0.098 6 40 0.158 0.053 0.168 0.278 0.459 - 0.082 7 47 0.180 0.051 0.148 0.276 0.407 0.116 0.081 8 54 0.204 0.048 0.153 0.277 0.417 0.165 0.081 9 61 0.225 0.047 0.146 0.321 0.441 0.181 0.083 10 68 0.245 0.044 0.145 0.312 0.430 0.196 0.080 11 75 0.264 0.044 0.153 0.303 0.421 0.211 0.083 12 82 0.281 0.047 0.152 0.324 0.401 0.236 0.090 13 89 0.298 0.046 0.148 0.312 0.352 0.249 0.091 14 96 0.314 0.044 0.142 0.317 0.364 0.265 0.092 15 103 0.328 0.043 0.140 0.320 0.340 0.231 0.094 16 110 0.343 0.043 0.139 0.316 0.349 0.257 0.097 17 117 0.356 0.042 0.143 0.316 0.340 0.287 0.097 18 124 0.369 0.042 0.140 0.298 0.331 0.315 0.099 19 131 0.380 0.042 0.138 0.294 0.322 0.259 0.101 20 138 0.393 0.042 0.137 0.279 0.319 0.276 0.101 21 145 0.405 0.041 0.136 0.278 0.299 0.299 0.100 22 152 0.415 0.041 0.137 0.270 0.294 0.289 0.102 23 159 0.426 0.041 0.136 0.265 0.288 0.299 0.103 24 166 0.436 0.041 0.134 0.265 0.283 0.305 0.105 25 173 0.446 0.041 0.132 0.261 0.283 0.302 0.106 26 180 0.455 0.042 0.131 0.261 0.284 0.309 0.107 27 187 0.464 0.042 0.132 0.251 0.280 0.316 0.108 28 194 0.473 0.042 0.131 0.249 0.278 0.319 0.109 29 201 0.481 0.042 0.130 0.247 0.276 0.311 0.110 30 208 0.489 0.042 0.128 0.240 0.273 0.307 0.109 31 215 0.497 0.043 0.129 0.239 0.270 0.316 0.111 32 222 0.505 0.043 0.128 0.238 0.271 0.326 0.112 33 229 0.512 0.043 0.127 0.238 0.269 0.332 0.112 34 236 0.519 0.043 0.125 0.236 0.264 0.335 0.112 35 243 0.524 0.043 0.124 0.235 0.262 0.336 0.113 36 250 0.529 0.043 0.123 0.233 0.260 0.335 0.112 37 257 0.535 0.043 0.122 0.233 0.261 0.335 0.113 38 264 0.539 0.043 0.122 0.230 0.262 0.334 0.113 39 271 0.543 0.043 0.121 0.228 0.261 0.339 0.114 40 278 0.546 0.044 0.121 0.224 0.261 0.344 0.114 41 285 0.549 0.044 0.120 0.223 0.262 0.343 0.115 42 292 0.552 0.044 0.119 0.223 0.263 0.348 0.114 43 299 0.555 0.044 0.118 0.223 0.264 0.352 0.115 44 306 0.557 0.044 0.117 0.224 0.263 0.354 0.116 45 313 0.559 0.044 0.118 0.222 0.263 0.359 0.116 46 320 0.561 0.044 0.117 0.222 0.264 0.361 0.116 47 327 0.562 0.044 0.117 0.221 0.264 0.367 0.116 48 334 0.563 0.044 0.117 0.221 0.264 0.370 0.116 49 341 0.565 0.044 0.116 0.222 0.264 0.377 0.117 50 348 0.565 0.044 0.115 0.222 0.264 0.383 0.116 51 355 0.566 0.044 0.114 0.222 0.266 0.381 0.116 52 362 0.567 0.043 0.114 0.221 0.267 0.381 0.115 53 369 0.568 0.044 0.114 0.220 0.267 0.384 0.116 54 376 0.569 0.044 0.114 0.222 0.267 0.386 0.117 55 383 0.570 0.044 0.113 0.222 0.268 0.392 0.117 56 390 0.571 0.043 0.113 0.221 0.270 0.394 0.116 57 397 0.572 0.043 0.113 0.221 0.272 0.395 0.117 58 404 0.573 0.043 0.113 0.221 0.274 0.400 0.117 59 411 0.574 0.043 0.113 0.221 0.275 0.403 0.117 60 418 0.575 0.043 0.113 0.222 0.276 0.407 0.117 61 425 0.576 0.042 0.114 0.222 0.278 0.409 0.117 62 432 0.578 0.043 0.113 0.223 0.279 0.412 0.118 63 439 0.578 0.043 0.113 0.225 0.281 0.417 0.118 64 446 0.580 0.043 0.113 0.225 0.284 0.419 0.118 65 453 0.581 0.042 0.113 0.226 0.285 0.422 0.118 66 460 0.582 0.042 0.114 0.227 0.286 0.426 0.119 67 467 0.583 0.042 0.114 0.228 0.286 0.426 0.118 68 474 0.584 0.042 0.114 0.228 0.287 0.430 0.119 69 481 0.585 0.042 0.114 0.228 0.288 0.432 0.118 70 488 0.586 0.042 0.114 0.228 0.288 0.433 0.118 71 495 0.587 0.042 0.114 0.228 0.290 0.434 0.118 72 502 0.589 0.041 0.114 0.227 0.290 0.437 0.118 73 509 0.590 0.041 0.114 0.227 0.292 0.436 0.118 74 516 0.591 0.041 0.114 0.228 0.291 0.438 0.118 75 523 0.592 0.041 0.114 0.228 0.292 0.440 0.118 76 530 0.594 0.041 0.114 0.228 0.292 0.441 0.118 77 537 0.595 0.041 0.114 0.229 0.293 0.441 0.118 78 544 0.598 0.041 0.115 0.229 0.295 0.442 0.118 79 551 0.600 0.041 0.115 0.230 0.295 0.444 0.118 80 558 0.602 0.041 0.115 0.231 0.295 0.447 0.118 81 565 0.604 0.041 0.115 0.231 0.295 0.447 0.118 82 572 0.606 0.041 0.116 0.231 0.296 0.447 0.119 83 579 0.609 0.041 0.116 0.231 0.296 0.449 0.119 84 586 0.612 0.041 0.116 0.231 0.297 0.449 0.119 85 593 0.615 0.041 0.116 0.232 0.297 0.448 0.119 86 600 0.620 0.041 0.117 0.231 0.297 0.446 0.119 87 607 0.624 0.041 0.117 0.232 0.297 0.443 0.119 88 614 0.630 0.041 0.117 0.232 0.297 0.441 0.119 89 621 0.635 0.041 0.117 0.232 0.297 0.442 0.119 90 628 0.640 0.041 0.117 0.231 0.297 0.441 0.119 91 635 0.646 0.041 0.117 0.231 0.297 0.440 0.119 92 642 0.651 0.041 0.117 0.231 0.297 0.440 0.119 93 649 0.656 0.041 0.118 0.231 0.296 0.442 0.119 94 656 0.662 0.041 0.118 0.231 0.296 0.441 0.119 95 663 0.668 0.042 0.118 0.231 0.295 0.442 0.119 96 670 0.674 0.041 0.118 0.231 0.296 0.444 0.119 97 677 0.678 0.042 0.118 0.231 0.295 0.444 0.119 98 684 0.684 0.042 0.118 0.231 0.294 0.443 0.119 99 691 0.689 0.042 0.118 0.230 0.294 0.443 0.119 100 698 0.695 0.042 0.118 0.230 0.294 0.444 0.119 101 705 0.702 0.042 0.118 0.230 0.294 0.444 0.120 102 712 0.709 0.042 0.118 0.230 0.293 0.444 0.120 103 719 0.715 0.042 0.118 0.230 0.293 0.443 0.120 104 726 0.721 0.042 0.118 0.230 0.293 0.443 0.120 105 733 0.727 0.042 0.118 0.230 0.293 0.443 0.120 106 740 0.732 0.042 0.118 0.230 0.292 0.444 0.120 107 747 0.739 0.042 0.118 0.229 0.292 0.444 0.120 108 754 0.746 0.042 0.118 0.230 0.292 0.444 0.120 109 761 0.751 0.042 0.118 0.229 0.291 0.445 0.120 110 768 0.758 0.042 0.118 0.229 0.290 0.445 0.120 111 775 0.764 0.042 0.118 0.229 0.289 0.444 0.120 112 782 0.770 0.042 0.118 0.228 0.289 0.445 0.120 113 789 0.777 0.042 0.118 0.228 0.288 0.444 0.120 114 796 0.782 0.042 0.118 0.228 0.288 0.445 0.120 115 803 0.787 0.042 0.118 0.228 0.288 0.445 0.120 116 810 0.793 0.042 0.119 0.228 0.288 0.445 0.119 117 817 0.798 0.042 0.119 0.228 0.288 0.445 0.119 118 824 0.804 0.042 0.119 0.228 0.288 0.445 0.119 119 831 0.808 0.042 0.119 0.228 0.288 0.445 0.119 120 838 0.813 0.042 0.119 0.228 0.288 0.445 0.119 121 845 0.816 0.042 0.119 0.227 0.288 0.445 0.119 122 852 0.822 0.042 0.119 0.227 0.288 0.445 0.119 123 859 0.823 0.042 0.119 0.227 0.288 0.445 0.119 124 866 0.829 0.042 0.119 0.227 0.288 0.445 0.119 125 873 0.830 0.042 0.119 0.227 0.288 0.445 0.119 126 880 0.834 0.042 0.119 0.227 0.288 0.445 0.119 127 887 0.837 0.042 0.120 0.227 0.288 0.445 0.119 128 894 0.840 0.042 0.120 0.227 0.288 0.445 0.119 129 901 0.841 0.042 0.120 0.227 0.288 0.445 0.119 130 908 0.842 0.042 0.120 0.228 0.288 0.445 0.119 131 915 0.843 0.042 0.121 0.229 0.289 0.446 0.119 132 922 0.844 0.042 0.121 0.230 0.290 0.446 0.119 133 929 0.845 0.042 0.121 0.230 0.290 0.446 0.119 134 936 0.846 0.042 0.121 0.231 0.290 0.446 0.119 135 943 0.846 0.042 0.122 0.232 0.290 0.446 0.119 136 950 0.848 0.042 0.122 0.232 0.291 0.446 0.119 137 957 0.848 0.042 0.122 0.232 0.291 0.446 0.118 138 964 0.849 0.042 0.122 0.233 0.292 0.446 0.118 139 971 0.850 0.042 0.123 0.234 0.292 0.446 0.118 140 978 0.850 0.042 0.123 0.235 0.292 0.446 0.118 141 985 0.851 0.042 0.123 0.235 0.292 0.445 0.118 142 990 0.851 0.042 0.123 0.236 0.293 0.446 0.118 $$ Effect of allowing for parameter variance in estimation of sig(I) ================================================================ Corrected sd'(I') = Sqrt[sd(I')^2 + I'^2 (sd(k)/k)^2]; I' = kI Maximum relative correction relSD = (sd'(I') - sd(I'))/sd'(I') = 0.086 Maximum relative sd(scale), sd(k)/k = 0.0239 for observation: HKL 28, 11, -3, resolution(A): 3.88, batch: 992, scale: 1.006, sd(scale): 0.024 I': 39.6, sd(I'): 9.9, corrected sd'(I'): 9.9 Analysis by resolution $TABLE: Effect of parameter variance on sd(I): $GRAPHS:Mean sd(k)/k and relative Delta(sd(I)) vs. resolution:0|0.0665888x0|0.0131545:2,4,5: $$ N 1/d^2 Dmid sd(k)/k relSD Number $$ $$ 1 0.0069 12.01 0.0108 0.029 8636 2 0.0202 7.04 0.0110 0.006 15855 3 0.0334 5.47 0.0115 0.003 19902 4 0.0467 4.63 0.0120 0.002 20078 5 0.0600 4.08 0.0125 0.001 9014 $$ Overall: 0.0116 0.006 73485 ============================================================== $TEXT:Result: $$ $$ Summary data for Project: XDSproject Crystal: XDScrystal Dataset: XDSdataset Overall InnerShell OuterShell Low resolution limit 57.12 57.12 4.08 High resolution limit 3.88 12.25 3.88 Rmerge (within I+/I-) 0.074 0.022 0.483 Rmerge (all I+ and I-) 0.082 0.023 0.540 Rmeas (within I+/I-) 0.091 0.028 0.637 Rmeas (all I+ & I-) 0.092 0.027 0.646 Rpim (within I+/I-) 0.052 0.016 0.411 Rpim (all I+ & I-) 0.040 0.013 0.344 Rmerge in top intensity bin 0.024 - - Total number of observations 73485 2852 3484 Total number unique 14975 628 1181 Mean((I)/sd(I)) 12.8 45.4 2.0 Mn(I) half-set correlation CC(1/2) 1.000 1.000 0.782 Completeness 85.1 98.4 48.0 Multiplicity 4.9 4.5 3.0 Mean(Chi^2) 0.99 0.91 0.99 Anomalous completeness 81.2 98.8 38.8 Anomalous multiplicity 2.5 2.7 1.7 DelAnom correlation between half-sets -0.046 -0.137 -0.073 Mid-Slope of Anom Normal Probability 0.986 - - The anomalous signal appears to be weak so anomalous flag was left OFF Estimates of resolution limits: overall from half-dataset correlation CC(1/2) > 0.30: limit = 3.88A == maximum resolution from Mn(I/sd) > 1.50: limit = 3.88A == maximum resolution from Mn(I/sd) > 2.00: limit = 3.88A == maximum resolution Estimates of resolution limits in reciprocal lattice directions: Along h axis from half-dataset correlation CC(1/2) > 0.30: limit = 3.88A from Mn(I/sd) > 1.50: limit = 3.88A == maximum resolution Along k axis from half-dataset correlation CC(1/2) > 0.30: limit = 3.88A from Mn(I/sd) > 1.50: limit = 4.40A Along l axis from half-dataset correlation CC(1/2) > 0.30: limit = 4.06A from Mn(I/sd) > 1.50: limit = 4.22A Anisotropic deltaB (i.e. range of principal components), A^2: 81.40 Average unit cell: 116.65 121.28 129.50 90.00 90.00 90.00 Space group: P 2 2 2 Average mosaicity: 0.49 Minimum and maximum SD correction factors: Fulls 0.80 1.88 Partials 0.00 0.00 $$ ============================================================== ==== Writing merged data for dataset XDSproject/XDScrystal/XDSdataset to file _HV7xxRWt9PT3HDO-SWS-masked-scaled.mtz Number of reflections written 14975 maximum resolution 3.875 $TEXT:Reference: $$ Please cite $$ P.R.Evans and G.N.Murshudov, 'How good are my data and what is the resolution?' Acta Cryst. D69, 1204-1214 (2013). PDF $$ End of aimless job, total time: cpu time: 7.83 secs, elapsed time: 8.0 secs